Errata on "Ga-fuzzy modeling and classification: complexity and performance" and "compact and transparent fuzzy models and classifiers through iterative complexity reduction"

نویسندگان

  • Johannes A. Roubos
  • Magne Setnes
چکیده

In our previous work we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction. An aggregated similarity measure is applied to search for redundancy in the rule base description. As a result, we propose an iterative fuzzy identification technique starting with data-based fuzzy clustering with an overestimated number of local models. The GA is then applied to find redundancy among the local models with a criterion based on maximal accuracy and maximal set similarity. After the reduction steps, the GA is applied with another criterion searching for minimal set similarity and maximal accuracy. This results in an automatic identification scheme with fuzzy clustering, rule base simplification and constrained genetic optimization with low-human intervention. The proposed modeling approach is then demonstrated for a system identification and a classification problem. Results are compared to other approaches in the literature. Attractive models with respect to compactness, transparency and accuracy, are the result of this symbiosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter 1 Compact Fuzzy Models and Classifiers through Model Reduction and Evolutionary Optimization

The automatic design of fuzzy rule-based models and classifiers from data is considered. It is recognized that both accuracy and transparency are of major importance and we seek to keep the rule-based models small and comprehensible. An iterative approach for developing such fuzzy rule-based models is proposed. First, an initial model is derived from the data. Subsequently, a real-coded genetic...

متن کامل

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

Comparing different stopping criteria for fuzzy decision tree induction through IDFID3

Fuzzy Decision Tree (FDT) classifiers combine decision trees with approximate reasoning offered by fuzzy representation to deal with language and measurement uncertainties. When a FDT induction algorithm utilizes stopping criteria for early stopping of the tree's growth, threshold values of stopping criteria will control the number of nodes. Finding a proper threshold value for a stopping crite...

متن کامل

Compact fuzzy models through complexity reduction and evolutionary optimization

Genetic Algorithms (GAs) and other evolutionary optimization methods to design fuzzy rules from data for systems modeling and classification have received much attention in recent literature. We show that different tools for modeling and complexity reduction can be favorably combined in a scheme with GA-based parameter optimization. Fuzzy clustering, rule reduction, rule base simplification and...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Fuzzy Systems

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001